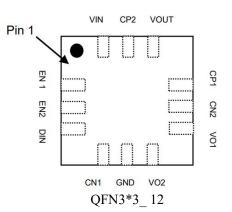


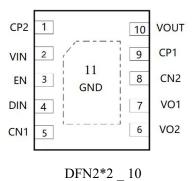
FEATURES

- Supply Voltage Range from 1.3 V to 5.5V
- 18V_{PP} Output from a 1.3V Supply
- Integrated Boost Converter Generates up to 16.5V Supply
- Input Signal 20Hz to 10kHz
- No Voltage Cross Output at Shutdown Mode
- Low Current Consumption
- Automatic Standby and Wake-up Control
- Available QFN16 and QFN12 package
- Short protection current about 100mA
- OTP feature

APPLICATIONS

- Health Care Systems
- Home Appliances

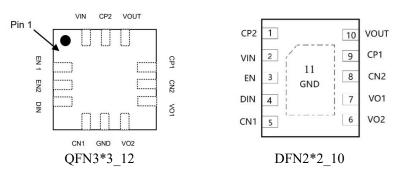

- Wrist Watches
- Handheld GPS devices
- PDAs
- Security Devices
- Alarm Clocks


DESCRIPTION

The SD110 is a switching driver with multi-mode charge pump for piezo-sounder. It can drive outputs up to 18Vpp from 1.3V supply. For adjusting the piezoelectric sounder sound volume, the charge pump can operate in either of a 1x, 2x or 3x mode. Because SD110 has the shutdown function, it is suitable for the battery application.

SD110 includes built-in automatic shutdown and wake up that guarantees longer battery life. SD110 features thermal shutdown and output short protection circuits.

PACKAGE (QFN16 AND QFN12)


ORDING INFORMATION

Part Number	Package Type	Package Qty	Op Temp(°C)	Mark
SD110	QFN12	5000	-40~85	SD110 XXX
SD110	DFN10	3000	-40~85	SD110 XXX

- 1 -

PINOUT

PIN FUNCTIONS

(1)G = Ground, I = Input, O = Output, P = Power

Pin Nu	umber	D. M	Т	
DFN2*2_10	QFN3*3_12	Pin Name	Туре	Function
2	1	EN1	Ι	Charge pump mode select 1
3	2	EN2	Ι	Charge pump mode select 2
4	3	DIN	Ι	Signal Input
5	4	CN1	Ι	Capacitor 1 Negative Terminal
	5	GND	Р	Ground
6	6	VO2	0	Positive Output
7	7	VO1	0	Negative Output
8	8	CN2	Ι	Capacitor 2 Negative Terminal
9	9	CP1	Ι	Capacitor 1 Positive Terminal
12		NC		No Connection
10	10	VOUT	0	Boost Output
1	11	CP2	Ι	Capacitor 2 Positive Terminal
2	12	VIN	Р	Power supply
11		EPAD		GND

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

(@ $T_A = +25^{\circ}C$, unless otherwise specified.)

Symbol	Characteristics	Value	Unit
VIN	Supply Voltage	-0.3 to 6.0	V
VOUT	Output Voltage	-0.3 to 16.5	V
VEN1	EN1 Voltage	-0.3 to V _{IN} +0.3	V
TA	Operating Free-Air Temperature Range	-40 to +85	°C
TJ	Operating Junction Temperature Range	-40 to +150	°C
TSTG	Storage Temperature Range	-65 to +150	°C

Note: 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(@ $T_A = +25^{\circ}C$, unless otherwise specified.)

Symbol	Characteristics	Conditions	Min	Max	Unit
VIN	Supply Voltage	1x Mode, 2x Mode,3x Mode	1.3	5.5	V

ESD Susceptibility

НВМ	Human Body Model	2	kV
ММ	Machine Model	600	V
CDM	Charged Device Model	1	kV

THERMAL INFORMATION

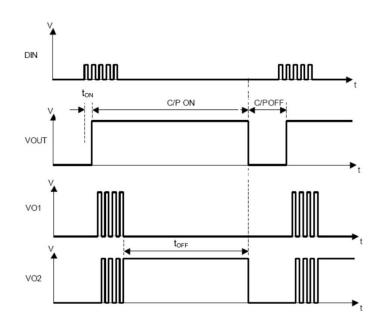
Parameter	Symbol	Package	Maximum	Unit
Thermal Resistance (Junction to Ambient)	θ_{JA}	DFN2*2_10	68	°C/W
Thermal Resistance (Junction to Case)	$\theta_{\rm JC}$	DFN2*2_10	25	°C/W
Thermal Resistance (Junction to Ambient)	θ_{JA}	QFN12L	68	°C/W
Thermal Resistance (Junction to Case)	θ_{JC}	QFN12L	25	°C/W

ELECTRICAL CHARACTERISTICS

(@ $T_A = +25^{\circ}$ C, $V_{IN} = 3.0$ V, $C_{PIEZO} = 30$ nF, $f_{DIN} = 4$ kHz, unless otherwise specified.)

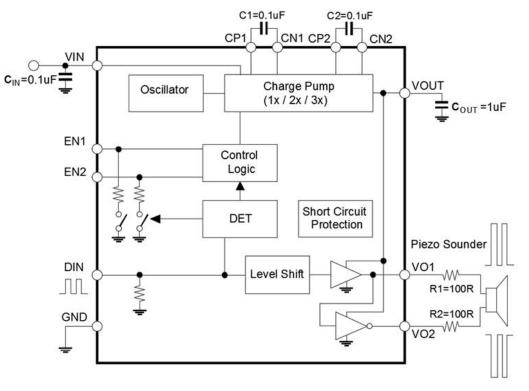
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
	VOUT1	1x Mode	1.2		3	V
Output Voltage	VOUT2	2x Mode	5.2		6	V
	VOUT3	3x Mode (Note 2)	7.2		9.1	V
	IDD11	1x Mode, C _{PIEZO} = No Load		105	_	μΑ
Operating Current 1	IDD12	2x Mode, C _{PIEZO} = No Load	_	249	_	μΑ
	IDD13	3x Mode, C _{PIEZO} = No Load		354	_	μΑ
	IDD21	1x Mode, Single-ended application	_	0.38	_	mA
Operating Current 2	IDD22	2x Mode, Single-ended application		1.33	_	mA
	IDD23	3x Mode, Single-ended application	_	2.8	_	mA
	IDD31	1x Mode, Differential application		1.1	_	mA
Operating Current 3	IDD32	2x Mode, Differential application		4.46	_	mA
	IDD33	3x Mode, Differential application		9.83	_	mA
Shutdown Current	ISD	DIN = 0V		7	20	nA
Input Frequency	fIN	Rectangular pulse		3	_	kHz
Oscillating Frequency	f _{osc}			200	_	kHz
	toni	1x Mode, From DIN signal High to $90\% V_{OUT}$ steady state		95	_	μs
VOUT Start Delay Time	t _{ON2}	2x Mode, From DIN signal High to 90% V _{OUT} steady state	_	310	_	μs
	t _{ON3}	3 x Mode From DIN signal High to 90% V _{OUT} steady state		390		μs
Shutdown Delay Time	t _{OFF}	DIN = H - > L		42	_	ms
Output Short-Circuit Current	ISC			40	_	mA
Control Terminal Voltage H	VIH	EN1, EN2, DIN pins	0.8*V _{IN}		VIN	V
Control Terminal Voltage L	VIL	EN1, EN2, DIN pins	0		0.2*V _{IN}	V
Control Terminal Current 1	IIH1	DIN = 3V	_	1.7	_	μΑ
Control Terminal Current 2	IIH2	$V_{EN1} = 3V, DIN = 3V$	_	1.7	_	μΑ
Control Terminal Current 3	IIH3	$V_{EN1} = 3V$, DIN = 0V	_		1	μΑ

CHARGE PUMP MODE SETTING

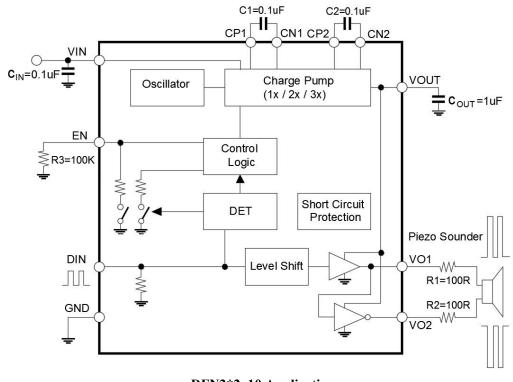

QFN3*3_12 MODE SETTING

DIN	EN1	EN2	MODE
0			Shutdown Mode
1	0	0	Shutdown Mode
1	0	1	1x Mode
1	1	0	2x Mode
1	1	1	3x Mode

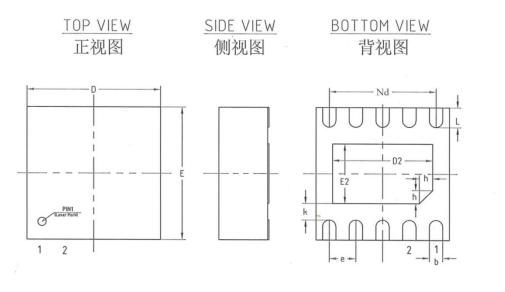
DFN2*2 MODE SETTING


DIN	EN	MODE
0		Shunt down Mode
1	0	2x mode
1	1	3x mode

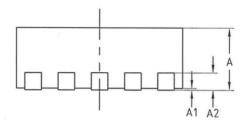
TIMING CHART



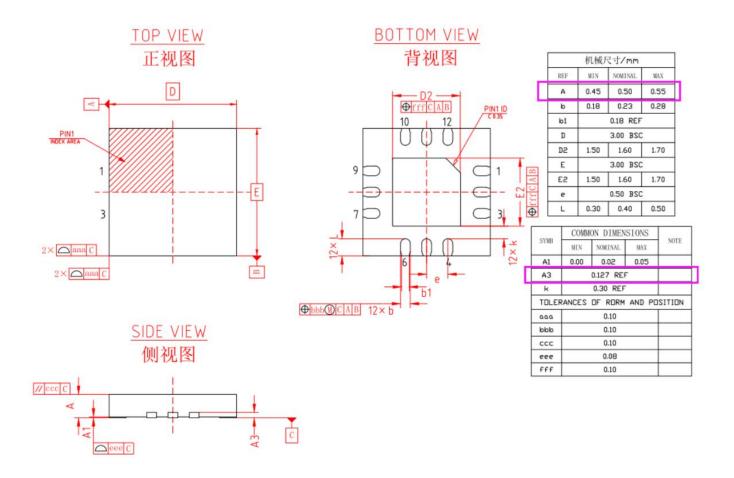
APPLICATION CIRCUIT


QFN3*3_12 Application

DFN2*2_10 Application



PACKAGE INFORMATION(DFN2*2_10)


	机械尺寸/mm					
字符 SYMBOL	最小值 MIN	典型值 NOMINAL	最大值 MAX			
Α	0.70	0.75	0.80			
A1	-	0.02	0.05			
A2		0.203 REI	F			
b	0.15	0.20	0.25			
D	1.90	2.00	2.10			
DS	1.45	1.50	1.55			
Е	1.90	2.00	2.10			
E2	0.85	0.90	0.95			
e		0.40 BSC	:			
к	0.20	0.25	0.30			
L	0.25	0.30	0.35			
h	0.15	0.20	0.25			
Nd	1.60 BSC					

<u>SIDE VIEW</u> 侧视图

PACKAGE INFORMATION(QFN3*3_12)

Responsibility and Copyright Declaration

Shenzhen Semihigh Technology Co., Ltd. has the right to make corrections, modifications, enhancements, improvements or other changes to the products and services provided. Customers should obtain the latest relevant information and verify whether this information is complete and up-to-date before placing an order. All products are sold in accordance with the sales terms and conditions provided during order confirmation.

Shenzhen Semihigh Technology Co., Ltd. assumes no obligation for application assistance or customer product design. Customers are solely responsible for their use of Shenzhen Semihigh's products and applications. To minimize risks associated with customer products and applications, customers should provide sufficient design and operational safety verification.

The customer acknowledges and agrees that although any application related information or support may still be provided by Semihigh, they will be solely responsible for meeting all legal, regulatory, and safety requirements related to their products and the use of Semihigh products in their applications. The customer declares and agrees that they possess all necessary professional skills and knowledge to develop and implement safety measures, foresee the dangerous consequences of faults, monitor faults and their consequences, reduce the probability of faults that may cause personal injury, and take appropriate remedial measures. The customer will fully compensate for any losses caused to Shenzhen Semihigh and its agents due to the use of any Shenzhen Semihigh products in such critical applications.

For the product manuals or data sheets of Shenzhen Semihigh, copying is only allowed without any tampering with the content and with relevant authorization, conditions, restrictions, and statements. Shenzhen Semihigh assumes no responsibility or obligation for such tampered documents. Copying third-party information may require additional restrictions.

Shenzhen Semihigh will update the content of this document from time to time. The actual parameters of the product may vary due to different models or other matters. This document does not serve as any express or implied warranty or authorization

When reselling Shenzhen Semihigh products, if there is a discrepancy or false content between the description of the product parameters and the parameters indicated by Shenzhen Semihigh, all express or implied authorizations related to Shenzhen Semihigh products will be lost, and this is an improper and fraudulent business behavior. Shenzhen Semihigh assumes no responsibility or obligation for any such false statements.

REVISION HISTORY

Document revision history

Data	Version	Changes
26-May-2024	Ver1.0	First issue DFN10 Spec
7-Aug-2024	Ver1.1	Application Circuit
17-Mar-2025	Ver1.2	Update the Isp current